Series SSO

कोड नं. 56/3/G

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पृस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/3/G 1 P.T.O.

सामान्य निर्देश:

- सभी प्रश्न अनिवार्य हैं। (i)
- प्रश्न संख्या 1 से 5 तक अति लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है। (ii)
- प्रश्न संख्या 6 से 10 तक लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं। (iii)
- प्रश्न संख्या 11 से 22 तक भी लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं। (iv)
- प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं। (v)
- प्रश्न संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं। (vi)
- यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमति (vii) नहीं है ।

General Instructions:

- (i) **All** questions are compulsory.
- Questions number 1 to 5 are very short answer questions and carry (ii) 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v)Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number 24 to 26 are long answer questions and carry 5 marks each.
- Use log tables, if necessary. Use of calculators is **not** allowed. (vii)
- दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए: 1.

OH CH_3

Write the IUPAC name of the given compound:

$$\overset{\text{OH}}{\underset{\text{CH}_3}{\longleftarrow}} \text{CH}_3$$

2. ज़िंक संक्रमण तत्त्व के रूप में क्यों नहीं जाता है ?

Why is zinc not regarded as a transition element?

3. 1 मोल Ag^+ को Ag में अपचियत करने में फैराडे में कितना आवेश (चार्ज) आवश्यक होता है ?

How much charge in Faraday is required for the reduction of 1 mol of Ag⁺ to Ag?

 $oldsymbol{4.}$ निम्नलिखित युग्म में $oldsymbol{\mathrm{S}_{\mathrm{N}}} oldsymbol{1}$ अभिक्रिया कौन अधिक तीव्रता से करेगा :

$$\begin{array}{c} {\rm CH_3} \\ | \\ {\rm C_6H_5-CH_2-Br} \end{array}$$
 और $\begin{array}{c} {\rm C_6H_5-CH-Br} \end{array}$

Which would undergo S_N1 reaction faster in the following pair :

$$$^{\rm CH_3}_{\rm l}$ \\ {\rm C_6H_5-CH_2-Br}$ and ${\rm C_6H_5-CH-Br}$$$

5. धूएँ की परिक्षेपित प्रावस्था और परिक्षेपण माध्यम लिखिए।

Write the dispersed phase and dispersion medium of smoke.

1

1

एक अभिक्रिया की अणुसंख्यता और अभिक्रिया की कोटि के बीच दो अंतरों को 6. लिखिए।

Write two differences between order of a reaction and molecularity of a reaction.

निम्नलिखित की संरचनाएँ लिखिए: 7.

2

2

- (i) N_2O_5
- BrF_3 (ii)

Write the structures of the following:

- N_2O_5 (i)
- (ii) BrF_3
- कॉम्प्लेक्स $[Co(en)_2Cl_2]^+$ का आई.यू.पी.ए.सी. नाम लिखिए । इस कॉम्प्लेक्स द्वारा किस 8. प्रकार की समावयवता दिखलाई जाती है ?

अथवा

आई.यू.पी.ए.सी. पद्धति के अनुसार निम्नलिखित उपसहसंयोजन यौगिकों के लिए सूत्रों को लिखिए:

2

2

- टेटाकार्बोनिलनिकल(0) (i)
- पोटैशियम टेटासाइनाइडोफेरेट(II) (ii)

Write down the IUPAC name of the complex [Co(en)₂Cl₂]⁺. What type of isomerism is shown by this complex?

OR.

Using IUPAC norms write the formulae for the following coordination compounds:

- Tetracarbonylnickel(0) (i)
- (ii) Potassium tetracyanidoferrate(II)

9. हिमांक के अवनमन से आप क्या समझते हैं ? हिमांक के अवनमन और विलेय के मोलर द्रव्यमान के बीच जो सम्बन्ध होता है, उसे व्युत्पन्न कीजिए।

2

What do you understand by depression of freezing point? Derive the relationship between depression of freezing point and molar mass of the solute.

10. निम्नलिखित को व्यवस्थित कीजिए:

(i)

2

- उनके क्षारीय क्षमता के बढ़ते हुए क्रम में ${\rm C_6H_5-NH_2,\ CH_3-CH_2-NH_2,\ CH_3-NH-CH_3}$
- (ii) जल में उनकी घुलनशीलता के बढ़ते हुए क्रम में ${
 m CH_3-NH_2},\ ({
 m CH_3})_3{
 m N},\ {
 m CH_3-NH-CH_3}$

Arrange the following:

- (i) In increasing order of their basic strength $C_6H_5-NH_2,\ CH_3-CH_2-NH_2,\ CH_3-NH-CH_3$
- (ii) In increasing order of solubility in water $CH_3 NH_2$, $(CH_3)_3N$, $CH_3 NH CH_3$
- 11. निम्नलिखित बहुलकों के एकलकों की संरचनाएँ और उनके नाम लिखिए :

3

- (i) पॉलिस्टाइरीन
- (ii) नाइलॉन 6,6
- (iii) टेरीलीन

अथवा

संरचना के आधार पर बहुलकों के वर्गीकरण का वर्णन कीजिए।

3

Write the names and structures of the monomers of the following polymers:

- (i) Polystyrene
- (ii) Nylone 6,6
- (iii) Terylene

OR

Describe the classification of polymers on the basis of structure.

56/3/G 5

P.T.O.

जब D-ग्लूकोस HCN से अभिक्रिया करता है तब प्राप्त उत्पाद को लिखिए। **12.** (i) प्रोटीनों की α -हेलिक्स संरचना को किस प्रकार का आबन्ध स्थिरता प्रदान करता है ? (ii) विटामिन B_{12} की कमी से जो बीमारी होती है, उसका नाम लिखिए । (iii) 3 (i) Write the product obtained when D-glucose reacts with HCN. (ii) What type of bonding stabilizes the α -helix structure of proteins? Write the name of the disease caused by the deficiency of vitamin (iii) B_{12} . निम्नलिखित पदों को परिभाषित कीजिए: 13. 3 शोषण (i) द्रवस्नेही कोलॉइडें (ii) संगुणित कोलॉइडें (iii) Define the following terms: Sorption (i) Lyophilic colloids (ii) Associated colloids (iii) जिर्कोनियम के परिष्करण के लिए जो विधि काम में लाई जाती है उसके पीछे के 14. (i) सिद्धान्त को बताइए। आयरन के निष्कर्षण में CO की भूमिका क्या है ? (ii) 'कॉपर मैटे' क्या है ? (iii) 3 Indicate the principle behind the method used for the refining of (i) Zirconium. (ii) What is the role of CO in the extraction of iron? (iii) What is 'copper matte'? 56/3/G 6

- निम्नलिखित के लिए कारण बताइए : 15.
 - PH_3 की अपेक्षा NH_3 का क्वथनांक उच्चतर है । (i)
 - $\mathrm{H_{2}S}$ की अपेक्षा $\mathrm{H_{2}Te}$ अधिक अम्लीय है । (ii)
 - रखे रहने पर क्लोरीन जल का पीलापन घटने लगता है। (iii)

Give reasons for the following:

- NH₃ has a higher boiling point than PH₃. (i)
- H_2 Te is more acidic than H_2 S. (ii)
- Chlorine water on standing loses its yellow colour. (iii)
- निम्नलिखित के लिए कारण दीजिए : 16.
 - ऐनिलीन फ्रीडेल क्राफ्टस अभिक्रिया नहीं करता है। (i)
 - p-मेथिलऐनिलीन अपेक्षाकृत p-नाइट्रोऐनिलीन से अधिक क्षारीय है। (ii)
 - ऑर्थो और पैरा यौगिकों के बनने से पहले ऐनिलीन में NH2 ग्रुप का ऐसीटिलीकरण (iii) किया जाता है।

Give reasons for the following:

- (i) Aniline does not undergo Friedel – Crafts reaction.
- (ii) p-methylaniline is more basic than p-nitroaniline.
- (iii) Acetylation of – NH₂ group is done in aniline before preparing its ortho and para compounds.
- निम्नलिखित कॉम्प्लेक्सों के आकार और उनकी संकरण अवस्था लिखिए : 17.
 - $[FeF_{6}]^{3-}$ (a) (i)
 - (ii) $[Ni(CO)_{4}]$

(परमाण क्रमांक : Fe = 26, Ni = 28)

CN और CO में से, कौन-सा लिगैण्ड धात के साथ अधिक स्थायी कॉम्प्लेक्स (b) बनाता है और क्यों ?

3

3

3

56/3/G 7 P.T.O.

- (a) Write the hybridization and shape of the following complexes:
 - (i) $[FeF_6]^{3-}$
 - (ii) [Ni(CO)₄]

(Atomic number : Fe = 26, Ni = 28)

- (b) Out of CN⁻ and CO, which ligand forms more stable complex with metal and why?
- 18. निम्नलिखित अभिक्रियाओं में प्रत्येक के मुख्य उत्पाद की संरचनाएँ लिखिए:

(i)
$$CH_3 - CH = CH_2 \xrightarrow{\text{(i) } B_2H_6} \xrightarrow{\text{(ii) } H_2O_2 / OH}$$

(ii)
$$CH_3 - CH_2 - CH - CH_3 + KOH (aq.)$$

Br

Write the structures of the major product in each of the following reactions:

(i)
$$CH_3 - CH = CH_2 \xrightarrow{\text{(i) } B_2H_6} \xrightarrow{\text{(ii) } H_2O_2 / OH}$$

(ii)
$$CH_3 - CH_2 - CH - CH_3 + KOH (aq.)$$
Br

(iii)
$$\stackrel{\text{Br}}{ }$$
 + Mg $\stackrel{\text{dry ether}}{ }$

56/3/G 8

19.	निम्नलिखित पदों को परिभाषित कीजिए : (i) क्रिस्टलीय ठोस (ii) फ्रेन्केल दोष (iii) n-टाइप अर्धचालक Define the following terms : (i) Crystalline solids (ii) Frenkel defect (iii) n-type semiconductor	3
20.	एक प्रथम कोटि की अभिक्रिया में 25% विघटन के लिए 10 मिनट लगते हैं । अभिक्रिया के $t_{1/2}$ का परिकलन कीजिए । (दिया गया है : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$) A first order reaction takes 10 minutes for 25% decomposition. Calculate $t_{1/2}$ for the reaction. (Given : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)	3
21.	20°C पर जल का वाष्प दाब 17.5 mm Hg है । जब ग्लूकोस (मोलर द्रव्यमान = 180 g mol^{-1}) का 15 g , 20°C पर जल के 150 g में घुलाया जाता है तो जल का वाष्प दाब परिकलित कीजिए । Vapour pressure of water at 20°C is 17.5 mm Hg . Calculate the vapour pressure of water at 20°C when 15 g of glucose (molar mass = 180 g mol^{-1}) is dissolved in 150 g of water.	3
22.	निम्नलिखित रूपांतरण आप कैसे करेंगे : (i) फ़ीनॉल को 2-हाइड्रॉक्सीऐसीटोफीनोन में (ii) एथिल क्लोराइड को मेथॉक्सी एथेन में (iii) ऐसीटोन को 2-मेथिलप्रोपैन-2-ऑल में How do you convert the following : (i) Phenol to 2-hydroxyacetophenone (ii) Ethyl chloride to methoxy ethane (iii) Acetone to 2-methylpropan-2-ol	3
56/3/0	9 P.7	Г.О.

Get More Learning Materials Here :

एक प्रसिद्ध स्कूल के प्रिंसिपल श्री राय ने मधुमेह और अवसाद (उदासी) जैसे गंभीर विषय पर 23. विचार के लिए एक सेमिनार का आयोजन किया जिसमें उन्होंने बच्चों के माता-पिता तथा अन्य प्रिंसिपलों को आमंत्रित किया । यह निर्णय किया गया कि सड़े हुए भोजन स्कूलों में प्रतिबन्धित किए जाएँ और स्वास्थ्यवर्धक भोज्य पदार्थ जैसे सूप, लस्सी, दूध, आदि स्कूलों की कैंटीनों में उपलब्ध कराए जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकालीन ऐसेम्बली के समय बच्चों को अनिवार्य रूप से आधा घंटे का शारीरिक श्रम कराया जाए । छः माह के पश्चात्, श्री राय ने अधिकतर स्कूलों में फिर निरीक्षण कराया और बच्चों के स्वास्थ्य में अदुभूत सुधार पाया गया।

उपर्युक्त प्रकरण को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- श्री राय द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ? (i)
- एक विद्यार्थी के रूप में, आप इन मूल्यों के प्रति कैसे जागरूकता फैलाएँगे ? (ii)
- शांतिकारी (प्रशान्तक) क्या होते हैं ? एक उदाहरण दीजिए । (iii)
- ऐस्पर्टेंम का उपयोग ठंडे भोजन और पेय पदार्थों तक ही सीमित क्यों रखा जाता है ? (iv)

Mr. Roy, the principal of one reputed school organized a seminar in which he invited parents and principals to discuss the serious issue of diabetes and depression in students. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Roy conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Mr. Roy?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) What are tranquilizers? Give an example.
- (iv)Why is the use of aspartame limited to cold foods and drinks?

56/3/G 10

$$Mg\left(s\right)\ \middle|\ Mg^{2+}\left(0.01\ M\right)\ \middle|\ Ag^{+}\left(0.0001\ M\right)\ \middle|\ Ag\left(s\right)$$

दिया गया है :
$$E^0_{(Mg^{2+}/Mg)} = -2.37 \,\mathrm{V}, \ E^0_{(Ag^+/Ag)} = +0.80 \,\mathrm{V}.$$

अथवा

(a) ${
m CH_3COOH}$ के $0.001~{
m mol~L^{-1}}$ विलयन की चालकता $4.95\times 10^{-5}~{
m S~cm^{-1}}$ है । इसकी मोलर चालकता और वियोजन-मात्रा (lpha) परिकलित कीजिए । ${
m \ \ }$ दिया गया है : ${
m \lambda}^0 ({
m H^+}) = 349.6~{
m S~cm^2~mol^{-1}}$ और

दिया गया है :
$$\lambda$$
 (H⁺) = $349.6~\mathrm{S~cm^2~mol^{-1}}$ और
$$\lambda^0 (\mathrm{CH_3COO^-}) = 40.9~\mathrm{S~cm^2~mol^{-1}}.$$

(b) ईंधन सेल क्या है ? अन्य साधारण सेलों की तुलना में इसका एक लाभ लिखिए । 5

Calculate e.m.f. and <G for the following cell at 298 K :

$$Mg\left(s\right)\ \middle|\ Mg^{2+}\left(0.01\ M\right)\ \middle|\ \middle|\ Ag^{+}\left(0.0001\ M\right)\ \middle|\ Ag\left(s\right)$$

Given :
$$E^0_{(Mg^{2+}/Mg)} = -2.37 \text{ V}, \quad E^0_{(Ag^{+}/Ag)} = +0.80 \text{ V}.$$

OR

(a) The conductivity of 0.001 mol L^{-1} solution of CH_3COOH is 4.95×10^{-5} S cm⁻¹. Calculate its molar conductivity and degree of dissociation (α).

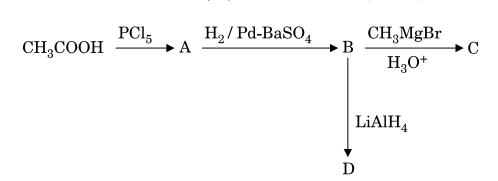
Given :
$$\lambda^0$$
 (H+) = 349.6 S cm² mol⁻¹ and
$$\lambda^0$$
 (CH₃COO⁻) = 40.9 S cm² mol⁻¹.

(b) What is a fuel cell? Write its one advantage over other ordinary cells.

- 25. (a) निम्नलिखित को कारण देते हुए स्पष्ट कीजिए:
 - (i) Eu^{2+} एक प्रबल अपचायक है।
 - (ii) संक्रमण धात्एँ रंगीन यौगिक बनाती हैं।
 - (iii) 3d श्रेणी में Zn की परमाणवीकरण (कणीकरण) एन्थैल्पी सबसे कम है।
 - (b) निम्नलिखित समीकरणों को पूर्ण कीजिए:
 - (i) $\text{KMnO}_4 \xrightarrow{\Delta}$
 - (ii) $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \longrightarrow$

5

अथवा


- (a) निम्नलिखित को कारण सहित समझाइए:
 - (i) संक्रमण तत्त्व अंतराकाशी यौगिक बनाते हैं।
 - (ii) $Mn^{3+}(3d^4)$ एक प्रबल उपचायक है जबिक $Cr^{2+}(3d^4)$ एक प्रबल अपचायक है ।
 - (iii) संक्रमण धातुओं के हिमांक उच्च होते हैं।
- (b) 'मिश धात्' क्या है ? इसका एक उपयोग लिखिए ।

5

- (a) Account for the following:
 - (i) Eu²⁺ is a strong reducing agent.
 - (ii) Transition metals form coloured compounds.
 - (iii) Zn has lowest enthalpy of atomization in 3d series.
- (b) Complete the following equations:
 - (i) $\text{KMnO}_4 \xrightarrow{\Delta}$
 - (ii) $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \longrightarrow$

OR

- (a) Account for the following:
 - Transition elements form interstitial compounds. (i)
 - $Mn^{3+}(3d^4)$ is strongly oxidizing whereas $Cr^{2+}(3d^4)$ is (ii) strongly reducing.
 - Transition metals have high melting points. (iii)
- (b) What is 'misch metal'? Write its one use.
- निम्नलिखित अभिक्रियाओं में A, B, C और D की संरचनाएँ लिखिए: 26. (a)

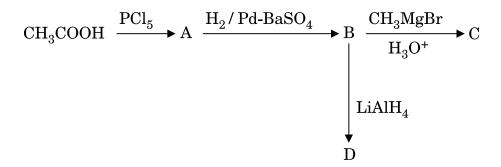
- निम्नलिखित के बीच अंतर कीजिए: (b)
 - (i) $CH_3 CO CH_2CH_3$ और $CH_3 CH_2 CH_2 CH_2$
 - (ii) एथेनैल और एथेनोइक अम्ल
- 4-क्लोरोपेन्टेन-2-ओन की संरचना लिखिए । (c)

अथवा

- जब प्रोपेनैल $(CH_3 CH_2 CHO)$ निम्नलिखित अभिकारकों से अभिक्रिया करता (a) है तो प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए:
 - Zn Hg/सान्द्र HCl (i)
 - (ii) $H_2N OH/H^+$
 - HCN (iii)

Get More Learning Materials Here:

56/3/G 13 P.T.O.

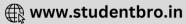

नाभिकस्नेही संकलन अभिक्रियाओं के प्रति निम्नलिखित की घटती हुई (b) अभिक्रियाशीलता के क्रम में व्यवस्थित कीजिए:

$$\label{eq:hcho} \text{HCHO}, \ \ \text{CH}_3 - \text{CO} - \text{CH}_3, \ \ \text{CH}_3 - \text{CHO}$$

निम्नलिखित यौगिकों के युग्म में अंतर करने के लिए एक सामान्य रासायनिक जाँच (c) दीजिए:

$$C_6H_5CHO$$
 और $C_6H_5-CO-CH_3$

Write the structures of A, B C, and D in the following reactions: (a)



- (b) Distinguish between the following:
 - $\mathrm{CH}_3-\mathrm{CO}$ – CH_2 CH_3 and $\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_2-\mathrm{CHO}$ (i)
 - (ii) Ethanal and ethanoic acid
- Write the structure of 4-chloropentan-2-one. (c)

\mathbf{OR}

- Write the structures of the main products when propanal (a) (CH₃ – CH₂ – CHO) reacts with the following reagents :
 - Zn Hg/conc. HCl (i)
 - $H_2N OH/H^+$ (ii)
 - (iii) HCN

Get More Learning Materials Here:

(b) Arrange the following in the decreasing order of their reactivity towards nucleophilic addition reaction:

$$\mathrm{HCHO},\ \mathrm{CH}_3-\mathrm{CO}-\mathrm{CH}_3,\ \mathrm{CH}_3-\mathrm{CHO}$$

(c) Give a simple chemical test to distinguish between the following pairs of compounds:

$$\mathrm{C_6H_5CHO}$$
 and $\mathrm{C_6H_5-CO-CH_3}$

CHEMISTRY MARKING SCHEME

Guwahati -2015 SET -56/3/G

Sr. No.	Value points						
1	2,4 – dimethylphenol						
2	Zn: [Ar] 3d ¹⁰ 4s ² / Because of Fully filled d-orbitals in ground state as well as in the						
	oxidized state.						
3	1 F/ 1 Faraday						
4	CH_3 $C_6H_5 - CH - Br$						
5	Dispersed phase: Solid, Dispersion medium: Gas	5	1/2 + 1/2				
6	Order	Molecularity	1+1				
	Sum of powers to which the	The number of reacting species in an					
	concentration terms are raised in rate	elementary reaction.					
	law expression.						
	May also be zero or in fraction	Cannot be zero or fraction.					
		(or any other correct differences)					
7	i) O	Br F	1+1				
8	Dichloridobis(ethane –1,2-diamine)cobalt (II Geometrical Isomerism / cis-trans Isomerism		1+1				
8	OR i) [Ni (CO) ₄] ii) K ₂ [Fo	o(CN).l					
	1) K2[10	C(C(V)4]	1+1				

9	$\Delta T_f = T_f^0 - T_f$	1
	The decrease in freezing point of a solvent due to the dissolution of a non-volatile	
	solute in it is called depression in freezing point	
	$\Delta T_f = K_f m$	
		1
	$\Delta T_f = K_f \times \frac{W_2 / M_2}{W_1 / 1000}$	
	W ₁ /1000	
	$M_2 = K_{\underline{f} \cdot W_2} \times 1000$	
	$\overline{W_1.\DeltaT_f}$	
10	:\ C NIII < C C NIII < C NIIIC	1+1
10	i) C ₆ H ₅ NH ₂ < CH ₃ CH ₂ NH ₂ < CH ₃ NHCH ₃	1+1
11	ii) (CH ₃) ₃ N < CH ₃ NHCH ₃ < C H ₃ NH ₂	
11	(i) Styrene, C_6H_5 — CH = CH_2	1/2 + 1/2
	(ii) Adipic Acid HOOC-CH ₂ -CH ₂ -CH ₂ -COOH	_,,_
	Hexamethylenediamine $H_2N-(CH_2)_6-NH_2$	
	(iii) Ethylene glycol HO-CH ₂ -CH ₂ -OH	1/2 + 1/2
	_	
	HOOC— COOH	
	Terephthalic acid	
		1/2 + 1/2
	(note: half mark for name/s and half mark for structure/s)	
	OR	
11	Linear polymers – Monomeric units join to form long polymeric chains.	
		1/2 + 1/2
	2. Branched chain polymers - Monomeric units join not only to form long polymeric chains but also branches.	1/2 + 1/2
		/2 T /2
	3. Three dimensional network polymers or cross-linked polymers- Monomeric units join to form	1/2 + 1/2
12	long polymeric chains and cross links.	1+1+1
12	CN	1+1+1
	HOH₂C-(CHOH)4 –Ç– OH	
	H	
	(i)	
	(i) Intermolecular H-Bonding.	
	(ii) Pernicious Anaemia.	
13	i) When both absorption and adsorption take place together, the phenomenon is	1+1+1

	concentration of the solution(above CMC)/substance which act as strong	
	electrolyte at low concentrations but act as colloids at higher concentration	
	due to micelle formation.	
14	a)Impure Zr reacts with I ₂ to form volatile ZrI ₄ which when heated at higher	1+1+1
	temperature decomposes to give pure Zr.	
	b)CO acts as a reducing agent.	
	c) It is a mixture of Cu₂S and FeS.	
15	i) Due to intermolecular H-bonding in ammonia .	1+1+1
	ii) Bond dissociation enthalpy of H—Te bond is lesser than that of H—S bond.	
	$ iii)Cl_2 + H_2O \longrightarrow HOCI + HCI$	
	or Due to the formation of Hydrochloric acid and Hypochlorus acid.	
16	(i) Aniline being a base reacts with AlCl₃(Lewis Acid) to form a salt.	1+1+1
	(ii) —CH ₃ group shows +I – effect(electron releasing group) whereas –NO ₂ group	
	shows –I- effect(electron withdrawing group)	
	(iii)To reduce activating effect of -NH ₂ .	
17	2 2	4, 4,
	(a) (i) sp ³ d ² , Octahedral	1/2 + 1/2
	(ii) sp ³ , Tetrahedral	1/2 + 1/2
		1/2 , 1/2
	(b) CO, because of synergic or back bonding.	/2,/2
18	(i) CH ₃ –CH ₂ - CH ₂ OH	1+1+1
	(ii) CH ₃ -CH ₂ -CH(OH)-CH ₃	
	# Aug	
	MgBr	
	(:::)	
19	(iii) (ii) (iii) (1+1+1
19	(i) Crystalline solids – They have definite and regular geometry which extends throughout the crystal .i.e , they have long range order .	1+1+1
	(ii) Frenkel defect – caused by the dislocation of cation in the crystal lattice.	
	(iii) n – type semiconductor – These are obtained due to metal –excess defect or by	
	adding trace amounts of group 15 elements (P , As) to extremely pure silicon or	
	germanium by doping .	
20	$k = 2.303 \log [A_0]$	
	t [A]	
		1/2
	$k = 2.303 \log 100$	
	10min 75	
1		I

	$k = 0.02879 \text{ min}^{-1}$	
	$t_{1/2} = \underline{0.693} = \underline{0.693}$ $k = 0.02879 \text{ min}^{-1}$	
	t _{1/2} = 24.07min	1
21	$\frac{\mathbf{p}_1^0 - \mathbf{p}_1}{\mathbf{p}_1^0} = \frac{\mathbf{w}_2 \times \mathbf{M}_1}{\mathbf{M}_2 \times \mathbf{w}_1}$	1
	$\frac{17.5 - P_1}{17.5} = \frac{\frac{15/180}{15}}{\frac{15}{180} + \frac{150}{18}}$	
	$=\frac{15}{1515}$	1
	= 0.01	
	$17.5 - P_1 = 0.01X 17.5$	1
	$17.5 - 0.175 = P_1$ $P_1 = 17.325 \text{ mmHg}$	
22	(i)	1+1+1
	(ii) CH3COCI AnhAlCl3	
	CH3-CH2-CI + CH3ONa CH3-CH2-O-CH3 (iii)	
	CH ₃ -CO-CH ₃ (i) CH ₃ MgBr H_3 C-C-OH CH_3 H_3 C-C-OH CH_3	
	(Or any other correct method.)	
23	(i) Concern for students health, Application of knowledge of chemistry to daily life, empathy, caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other	1/2, 1/2

	2	
24	$E_{Cell} = (E^{O}c - E^{O}A) - 0.059/2 \text{ V log } [Mg^{2+}] / [Ag^{+}]^{2}$	1
	$= [.80 - (-2.37)] - 0.059/2 \text{ V log } [10^{-2}/(10^{-4})^2]$	1
	$= 3.17-0.0295 \text{ V X log } 10^6$	
	= 3.17-0.0295 V X 6	
	= 3.17-0.1770	
	= 2.9930 V	1
	$\Delta G = -nFE_{Cell}$	1/2
	= -2 X 96500 Cmol ⁻¹ X 2.9930 V	1/2
	= -577649 Jmol ⁻¹	
	= -577.649 kJmol ⁻¹	1
	OR	
24	$\Lambda_{\rm m} = (k/M) \times 1000 {\rm Scm}^2 {\rm mol}^{-1}$	
	$= (4.95 \times 10^{-5}/0.001) \times 1000 \text{ Scm}^2 \text{mol}^{-1}$	1/2
	$= 49.5 \text{ Scm}^2 \text{mol}^{-1}$	
		1
	A (A)	
	$\alpha = \Lambda_{\text{M}}/\Lambda_{\text{M}}^{0}$	1/2
		/2
	$= 390.5 \text{Scm}^2 \text{mol}^{-1}$	
	$\alpha = 49.5/390.5$	1
	= 0.127 or 12.7%	-
		1
	b)Which converts energy of combustion of fuels directly into electrical energy.	1
	Advantages: high efficiency,pollution free	
25	(i) +3 oxidation state of Eu is more stable.	1
	(ii) Due to d-d transition / unpaired electrons in d orbitals.	
	(iii) Doo to consulately filled despitate which had to be a second or set the file of	1
	(iii) Due to completely filled d-orbitals which leads to weak metallic bond.	
	(b) (i) $2KMnO_4 \Delta K_2MnO_4 + O_2 + MnO_2$	1
	(b) (i) $2KMnO_4 \longrightarrow K_2MnO_4 + O_2 + MnO_2$	1
	(m) 2 2 2 4 4 4 6 7 2 4 6 7 3 4 7 7 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7	1
	(ii) $\operatorname{Cr_2O_7}^{2^-} + 14 \operatorname{H}^+ + 6 \operatorname{Fe}^{2^+} \rightarrow 2 \operatorname{Cr}^{3^+} + 6 \operatorname{Fe}^{3^+} + 7 \operatorname{H_2O}$	1
		-
	OR	
25	(a) (i)because small size atoms like B, C , H,N occupy interstitial sites in the lattice of	1
	transition elements.	
	(ii) Because Cr ³⁺ has the stable t _{2g} ³ configuration whereas Mn ²⁺ has stable 3d ⁵	1
	configuration(half filled).	
	(iii) Due to involvement of d-electrons in metallic bonding.	1
	(b) Misch metal is an alloy which consist of a lanthanoid metal (95%) and iron (5%) and	1
	traces of S,C,Ca and Al.	
	USE- It is used in Mg-based alloy to produce bullets, shell and lighter – flint.	1

						.OH	
		(a)	A-	CH₃COCl B-	CH₃CHO	C- CH3−CH−CH3	
			5	CH CH OH			1
				CH ₃ CH ₂ OH heating with Na ₂ CH ₂ CHO does no		COCH ₂ CH ₃ gives yellow ppt of CHI ₃ whe	ereas 1
			ii)On a			oic acid gives brisk effervescence where	eas
						(Or any other distinguish	ning test) 1
			c) CH₃(COCH₂CH(CI)CH₃			
26	5					OR	1
				CH ₃ -CH ₂ -CH ₃ CH ₃ -CH ₂ -CH=N-C	DН		1
							1
					ЭН		
				(iii) CH3-CH ₂ -C			
							1
			(b)	HCHO >CH₃CHO :	CH ₂ COCH ₂		1
			(c) Or		OH/ I ₂ , C ₆ H ₅ 0	COCH ₃ gives yellow ppt of CHI ₃ whereas	S
						(or any other distinguish	ning test)